First in Human Data of NKX019, an Allogeneic CAR NK for the Treatment of Relapsed/Refractory (R/R) B-cell Malignancies


1 Peter MacCallum Cancer Centre, Melbourne, Australia; 2 St. Vincent Hospital, Sydney, Australia; 3 Royal Prince Alfred Hospital, Sydney, Australia; 4 Nkarta Therapeutics, South San Francisco, United States of America; 5 Royal Brisbane and Women’s Hospital, Herston QLD, Australia; 6 Colorado Blood Cancer Institute, Denver, United States of America; 7 Cleveland Clinic, Cleveland, United States of America

Background

Autologous CAR T-cell therapies have altered the treatment landscape for many patients (pts) with advanced B-cell malignancies, however custom manufacturing precludes prompt treatment and can result in manufacturing failure. T-cell mediated toxicities are common and can be severe, thereby limiting the population of eligible pts. These challenges limit CAR T-cell therapy administration to certified treatment centers, further restricting patient access.

NKX019 is a cryopreserved, allogeneic CD19-targeting CAR NK-cell therapy, derived from healthy donor NK cells, with CD3 zeta and OX40 costimulatory domains and a separate membrane bound IL-15 for activation. NKX019 has shown encouraging in vitro and in vivo cytotoxicity. Development of an on demand allogeneic NK-cell therapy may address challenges associated with CAR-T therapy.

Methods

This is an open label, phase 1 trial (NCT05020678) for adults with r/r B-cell malignancies with ≥2 prior lines of therapy excluding prior auto CD19 CAR T-cell therapy. Following 3 days of lymphodepletion (LD) with fludarabine and cyclophosphamide, pts received NKX019 at 3 dose levels (3 × 10^8, 1 × 10^9, or 1.5 × 10^9 CAR+ NK cells/dose on days 0, 7, and 14 of a 28-day cycle). Additional cycles were allowed to deepen response. Tolerability, anti-tumor activity, cellular kinetics, and immune responses were evaluated.

Results

As of November 2022, 19 pts in the US and Australia with r/r B-cell malignancies (14 with non-Hodgkin lymphoma (NHL) (LBCL, FL, MZL, or MCL) and 5 with leukemia (ALL or CLL) received NKX019. Median age was 59 years (range 21-82), with median 4 prior lines of therapy.

Grade 3/4 hematologic toxicity was 84%, consistent with expected myelosuppression related to LD. There was one grade 3 infection. No treatment related AEs leading to discontinuation of NKX019 were observed. No dose limiting toxicities, neurotoxicity, or GvHD were reported. Five of 19 pts (26%) developed transient fever within 8 hours of NKX019 dosing, but no pts developed signs of cytokine release syndrome beyond 24 hours after cell infusion.

Efficacy was shown across histologies, with 8 pts achieving CR, including 5 after a single treatment cycle. Three pts deepened from PR to CR with additional cycles. Three of the 4 pts with NHL treated at the 1.5 billion cell dose also achieved CR. In the 2 higher dose cohorts, there was an 80% ORR and 70% CR rate in NHL, including a 50% CR rate in LBCL. With regards to durability, 5 pts had CR that exceeded 6 months, including one pt with LBCL, who had CR for over 9 months.

Three pts had presumed disease recurrence, each after at least 6 months of CR and none at the highest dose level. These pts are eligible for retreatment. Pharmacokinetic data showed a correlation between higher cell doses and higher peak concentration (Cmax), with a trend toward higher Cmax in pts achieving CR. No association was observed between clinical response and elevation of serum cytokines.

Conclusion

- Initial data with NKX019 shows durable efficacy across multiple NHL histologies and the option for retreatment in the setting of relapse.
- On demand dosing and a manageable safety profile allow for increased patient access, including in the outpatient setting.
- Expansion cohorts are now enrolling and will include both LBCL patients who are CAR naïve and CAR experienced.